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Abstract

A Markov random field (MRF) based method using both contextual information and multiscale fuzzy line process for classifying

remotely sensed imagery is detailed in this paper. The study area known as Elkhorn Slough is an important natural reserve park located in the

central California coast, USA. Satellite imagery such as IKONOS panchromatic and multispectral data provides a convenient way for

supporting the monitoring process around this area. Within the proposed classification mechanism, the panchromatic image, benefited from

its high resolution, mainly serves for extracting multiscale line features by means of wavelet transform techniques. The resulting multiscale

line features are merged through a fuzzy fusion process and then incorporated into the MRF model accompanied with multispectral imagery

to perform contextual classification so as to restrict the over-smooth classification patterns and reduce the bias commonly contributed by

those boundary pixels. The MRF model parameter is estimated based on the probability histogram analysis to those boundary pixels, and the

algorithm called maximum a posterior margin (MPM) is applied to search the solution. The results show that the proposed method, based on

the MRF model with the multiscale fuzzy line process, successfully generates the patch-wise classification patterns, and simultaneously

improved the accuracy and visual interpretation.
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1. Introduction

Image classification is an important part in many remote

sensing applications. Beginning with the Earth Resources

Satellite (LANDSAT-1), spectral imagery has been the

primary tool for scene classification. With the advent of

higher spatial resolution systems (IKONOS, Quickbird,

SPOT-1), other techniques begin to offer promise for the

analysis of satellite derived imagery. In recent years, the

progress of computer capabilities makes spatial feature

processing techniques practical to implement in pursuit of

improvement in classification accuracy (Olsen et al., 2002).

A trend for incorporating spatial data into the classification

pool is certainly triggered by the concept that, for the same
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land-use/land-cover types, they not only reveal similarity in

spectral reflectance, but should also contain certain relation

in spatial domain. Contextual information is one kind of such

spatial relationship and has drawn our particular interest for

remotely sensed imagery interpretation shown in this study.

Contextual information, or so-called context for simplicity,

may be defined as how the probability of presence of one

object (or objects) is affected by its (their) neighbors.

Generally, in remote sensing land-use/land-cover classifica-

tion, a pixel labeled as forest is likely to be surrounded by the

same class of pixels unless that pixel is located in boundary

area. If such contextual information can be well modeled, the

classification accuracy may be improved significantly

(Khedam & Belhadj-Aissa, 2003; Mather, 1999).

Incorporating contextual information into classification

process can be done in different ways. One simple method

of adopting context is to use majority voting within a

prescribed window. In such a method, the central pixel will
ent 97 (2005) 127 – 136
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be changed to the class that occurs most frequently in the

window. This is a common post-processing technique after a

pixel-based classifier has been implemented. There are more

elegant ways of modeling such contextual behavior. A class

of contextual model known as Markovian random fields

(MRF) can be useful for modeling context in a more precise

way (cf. Fan & Xia, 2001; Geman & Geman, 1984). The

MRF is used to construct a priori probability in Bayesian

sense so as to accomplish the Maximum a Posteriori (MAP)

estimate during the classification process. Such a MAP

solution often provides more satisfactory results than

Maximum Likelihood (ML) classifier (Li, 1995).

Even though MRF is commonly robust in its classifica-

tion performance, errors frequently occur upon boundary

(edge) areas. If those boundary pixels are not well defined

and controlled during the classification process, the resulting

classified image will eventually reveal an over-smooth

outcome (i.e. loss of significant details and generating too

large patches, cf. Wang & Wang, 2004). To avoid such

errors, one has to accurately identify those edge pixels and

reduce their contribution to the classification pool. Once

those edge pixels have been accurately identified, the

success of pattern recognition can be significantly enhanced

(Wei & Gertner, 2003).

To identify meaningful edges (i.e. real boundaries) should

draw our further concern since edges hold resolution-

dependant nature. Specifically, the edges derived from

different resolutions (or so-called scales) may show different

significant levels (i.e. the likelihood to be a real edge)

depending on the application being undertaken and scene

properties (Mather, 1999). If one could develop an objective

way to gather those edge information from multiscales while

simultaneously take those edges’ various significances into

account, the edges being incorporated into the classification

process will be more accurate and naturally higher proba-

bility of success in classification can be achieved. There are

many edge detection techniques available (cf. Bian, 2003;

Canny, 1986; Mallat & Zhong, 1992; Rydberg & Borgefors,

2001). Of particular interest to us is the wavelet-based edge

detection method developed by Mallat and Zhong (1992)

due to its robustness in multiscale edges extraction. In the

later experiment shown, once the edges have been quantified

from different scales, edge fusion is then performed to

generate combined multiscale fuzzy edge patterns for

inputting into the MRF classification model.

A model is unable to show its full effectiveness if the

relevant parameters are not accurately defined. In the case of

MRFmodel, the most widely known technique for estimating

the model parameters is the coding method (Derin & Elliott,

1987; Elliott et al., 1984) and least square fit method (Besag,

1974). The success of these approaches relies on the

complete understanding of image neighborhood configura-

tions (Ibáñez & Simó, 2003). Unfortunately, in practical

sense, the neighborhood configurations are difficult to

acquire. The parameter within MRF model is therefore

somehow determined in trivial and thus considerably restricts
the model capabilities (Tso & Mather, 1999, 2001). A more

efficient method is clearly required to cope with such

parameter estimation issue. We propose an approach based

on the probability histogram analysis to the edge pixels to

successfully perform parameter estimates which will be

introduced below.
2. Theoretical background

2.1. Multiscale edge detection using wavelet

Mallat and Zhong (1992) show that, for edge detection,

the edge occurs at the local maxima of the wavelet transform

modulus |Wwa,b
f(t)| for a signal, where Wwa,b

f(t) denotes

wavelet transform of a function f(t), w called the mother

wavelet, and a, b as the dilation step and translation step of

translation and dilation processes, respectively. The detec-

tion of local modulus maxima is done via an adaptive

sampling that finds the sharp variation points. By varying

the parameter a, one can obtain the distribution of edges

across multiple scales. For most purposes, as both the

computational time and practical usage are concerned, the

dyadic sequence (2r) rather than continuous scale parameter

is chosen. When implemented for an image at scale 2r, the

edge detection in two-dimensional case, two wavelets used

for the horizontal (H) and vertical (V) direction transforms,

respectively, are required, i.e.

WH
w2r

f x; yð Þ ¼ 1

22r
f wH x

2r
;
y

2r

��
ð1Þ

WV
w2r

f x; yð Þ ¼ 1

22r
f wV x

2r
;
y

2r

��
ð2Þ

At each scale, the modulus of the gradients derived by

wavelet transform is given by

M2r f x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jWH

w2r
f x; yð Þj þ jWV

w2r
f x; yð Þj

q
; ð3Þ

and the associated phase is shown as

A2r f x; yð Þ ¼ tan�1 WV
w2r

f x; yð Þ=WH
w2r

f x; yð Þ
��

ð4Þ

The edge points are then identified as the pixels with

locally modulus maxima in one-dimension neighboring

pixel along the direction A2rf(x,y) (Mallat & Zhong, 1992).

2.2. Markov random field models

Let x ={x1,x2,. . .,xn} denote an image of n pixels, and

suppose c ={c1,c2,. . .,cn} denoting the understanding of x,

i.e., ci is the class to which pixel i belongs. Then x is called

a random field. To construct the relationship between x and

c, one may use the Bayesian paradigm, which holds the

following conditional probability relation

p cjxð Þp xð Þ ¼ p xjcð Þp cð Þ: ð5Þ
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Normally, to acquire c, one may adopt a maximum a

posteriori (MAP) solution as

ĉc ¼ arg max
c

p xjcð Þp cð Þ½ �: ð6Þ

In general, p(x|c) is modeled in terms of the Gaussian

distribution, while p(c), the prior probability about the

understanding of image c, can be modeled based on the

Markov Random Field (MRF) (cf. Besag, 1986; Li, 1995).

The Markov assumption states that the conditional distri-

bution of a pixel given all the other pixels in the image is

identical to the conditional distribution of the pixel given the

neighboring pixels. Accordingly, based on MRF, following

equation sustains

p cð Þ ¼ p cijcS� if g
� �

¼ p cijcNi
ð Þ ð7Þ

where cNi
denotes the neighboring pixels around the pixel i,

and S-{i} is the set difference denoting all the pixels in the

image except pixel i. The neighborhood configuration may

contain second or higher orders of neighboring pixel

arrangements. In the case of pair-wise second order

neighborhood (i.e. the nearest horizontal, vertical, and

triangular neighboring pixels) defined in MRF, the prior

probability is modeled by

p cijcNi
ð Þ ¼ exp

X
i;jaNf g

bII ci ¼ cj
� �1A

0
@ ,

Z ð8Þ

Here, b is the Gibbs distribution parameter expressing

the strength of how an occurrence of class ci for pixel i is

affected by its neighborhood cNi
. I(A) is an indicator

function for an event A to occur. Z is a normalization

constant making p(I) a proper distribution (Besag, 1986).

Note that Eq. (8) is mainly to achieve smoothness every-

where within an image. However, for real data, the scene is

more likely to be analyzable in the sense of piecewise

continuous or smoothness. In other words, there are always

boundaries, and the boundary pixels are likely to be

misclassified due to their uncertain nature. To cope with

this issue, Eq. (8) is refined to include a so-called line

process and in terms of taking logarithm domain as

logp cijcNi
ð Þ ¼

X
i;jf gaN

bI ci ¼ cjÞ 1� lið Þ
�

ð9Þ

where li =1, if pixel i is recognized as an edge, and 0

otherwise. The above equation indicates that the contextual

effect will turn off as an edge is encountered. In other words,

the smoothing is not allowed to cross the boundaries.

However, to make Eq. (9) useful, one has to determine the

edges with higher confidence. This issue will be treated later.

To solve Eq. (6), numerous algorithms can be adopted,

such as Iteration Condition Mode (ICM) (Besag, 1986),

Simulated Annealing (SA) (Geman & Geman, 1984), and

Maximum a Posterior Margin (MPM) (Marroquin et al.,

1987). SA is a global optimization algorithm, which,

however, suffers considerable computational burden. ICM
can obtain the solution within very short term, but it

normally only achieves to local minimum (or maximum).

This study therefore adopts MPM as alternative for solving

the Eq. (6) due to MPM’s tractable computational burden and

higher quality results. The practical application of the MPM

algorithm relies on an important assumption that a Markov

chain exists over mn, where n denotes the number of pixels

within an image, m is the total number of classes. Once the

number of state transitions within a Markov chain has

reached a steady state, the marginal posterior probability can

be approximated by counting the number of times that each

class occurs at each pixel in a series of configurations. The

approximation made by MPM method adopts the essence of

Markov chain Monte Carlo techniques, and is expressed by

p crjxið Þ ¼ 1

g � m

Xg

mþ1

I crð Þ ð10Þ

where p(cr|xi) represents the probability of a class cr given

the observation xi at pixel i, 1 / (g�m) is the normalization

term, while m denotes the minimal iterations that an MRF

required to reach a stable state and g denotes the maximal

iteration number that we wish a MRF to perform transitions,

and I(cr) is the Boolean indication function pointing cr to

occur. In practice, if one sets parameter g to more than 200

and m to more than 20, respectively, stable results are likely to

be reached. (comparable to SA, cf. Tso & Mather, 2001).
3. Methodology

3.1. Test data and framework

The study area known as Elkhorn Slough is located in the

central California coast about 160 km south of San

Francisco, California, USA (Silberstein & Campbell,

1989). The study imagery for the scene was captured by

the IKONOS satellite on October 23, 2002. The Elkhorn

Slough is an important natural reserve in a largely

agricultural/urban area. Satellite imagery can provide a

convenient means for monitoring the evolution of the area.

A test area (within the rectangle block as shown in Fig. 1)

was extracted from the image to proceed the classification

methodology analysis. For IKONOS multispectral imagery,

the test area is 1024 by 1024 pixels, while the corresponding

area in the 1-m resolution panchromatic image is 4096 by

4096 pixels in size. Eight information classes were chosen as

shown in Table 1. The ground truth used to select the training

set and later to evaluate the classification accuracy is based

on the ground truth map provided by the Elkhorn Slough

Foundation (ESF). There are totally 71,804 ground truth

pixels available. Of those ground truth pixels, 15,451 pixels

are assigned to the training set to train the ML classifier, and

56,353 pixels are used for accuracy evaluation.

The framework of the experiment is shown in Fig. 2.

Wavelet transform technique (Mallat & Zhong, 1992) is

applied to detect multiscale edges from panchromatic image.
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Fig. 2. Experimental framework.

Fig. 1. IKONOS panchromatic imagery of the study area around Elkhorn

Slough C.A., USA.
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Those multiscale edges are furthered through a fusion

process to reveal their different significance levels. The

multispectral imagery are input to the maximum likelihood

classifier to obtain the first stage classification probabilities,

and later refined by contextual information based on MRF

fuzzy line process model with both well estimated MRF

model parameter and fused line features.

3.2. Line feature extraction and multiscale edge fusion

According to the wavelet transform shown in Eqs. (1) (2)

(3) and (4), three scale images with parameter r set as 0, 1,

and 2, respectively, are used to derive edges. The resulting

edge patterns are shown in Fig. 3(a) and (b). It should be

recognized that, rather than arbitrarily determinate a pixel as
Table 1

Selected information classes for classification experiments

No. Class name

1 Cultivated land

2 Dry grass land

3 Water

4 Wetland

5 Trees

6 Crop vegetation (strawberries, broccoli, and lettuce)

7 Naked range fields

8 Man-made features (buildings, roads)
an edge or not, edges do exhibit fuzziness in nature.

Specifically, to an edge’s occurrence, its significance (i.e.

the likelihood to be a real edge) should be highly correlated

to two factors, namely, how the variations between pixels are

treated and image scales. In the lower scale image (such as

scale r =0), even minor variations between pixels can be

recorded. As the scale gets larger (e.g. r =2), only the sharper

variations between pixels is detected. One may thus

recognize that an edge simultaneously detected in both

lower and higher scales should be more significant (i.e. more

likely to be a real edge) than the edge only occurs in lower

scale. Following such derivation, an edge fusion process is

then adopted to address such concerns so as to reflect the

edges’ different significance levels. In such a way that the

edges being incorporated into the classification process will

be more accurate and naturally higher probability of success

in classification can be pursued. The edge fusion process is

based on the following proposed rules:

1. A pixel in the fused image is assigned with a value of F2_,
if the pixel is detected as an edge in the scale 2 and

accompanied by at least scale F0_ or F1_;
2. A pixel in the fused image will be assigned with a value

of F1_, if the pixel is detected as an edge both in scale F0_
and F1_;

3. A pixel is assigned with a value of F0_ if the pixel is

detected as an edge only in scale F0_; and
4. A pixel is assigned to the value of F255_ (in 8-bit

image storing format) if the pixel is not an edge pixel in

any scales.

The ways to the value assignment shown above is to

provide as a basis to quantify the edge’s significance. These

values are then dedicated into contextual classification

process through a fuzzy mechanism as will be described later.

The rules described in Rules 1 and 2 warrant further

discussion. We consider the edges in the higher scales are



(a)

(b)

(c)

r=0 r=1 r=2 

r=0 r=1 r=2 

Fig. 3. (a) Parts of original images with scale r =0, 1, and 2, respectively, (b) edge detection results corresponding to each scale, and (c) fused edge image.

Please note that different significance of the edges are represented in terms of different gray levels.
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significant only if such edges (for example, scale 2) are

reinforced from the lower scales (for example, scale 1 or

0). In this way, the misidentification of significant edges

can be eliminated. The larger scale images could encounter

potential distortion contributed by the wavelet transform

process and can cause edges coexisting as neighbors

within the fused image. An edge thinning process is thus

applied to the fused edge image for correction purpose.

Some other techniques (Steger, 1998) may also be used for

improving such distortion due to scale. The choice of the

edge location during the thinning process is according to

where the lower value occurs within the pairing of edge

pixels. It is recognized that, in the case of pair-wise edge

coexistence, the edge detected by lower scale images

should be more accurate in spatial location. Upon the

thinning process, some isolated edge pixels are also

eliminated. This, in turn, reduces the misidentification risk

to an edge made by spurious noise. The fused edge image

is finally shown in Fig. 3(c). Please note that the edges

derived from three scales (i.e. r from 0 to 2) shown here is
just for demonstration purposes; one may naturally extend

the method to develop edges from more scales to fulfill

particular needs.

3.3. Parameter estimation

A model is not complete if both the model form and the

relating parameters are not well defined. The MRF model

previously described provides a theoretically robust basis

for modeling the context in spatial domain. However, how

to assign the suitable parameters into the model remains as

a serious problem. Recall that Eq. (9) showing two

parameters, namely li and b, need to be determined. The

li is normally Boolean which only concerns whether a

pixel i is an edge (li =1) or not (li =0) and totally

disregards the different significance levels relating to the

edge. However, according to the nature of multiscale edges

as described above, the parameter li adopted here is thus

refined through a fuzzified process (Bezdek, 1999) to

facilitate the quantization to the edges’ significance in a
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more objective way. The fuzzy membership function can

quantify the level of significance about an object or event

belonging to a fuzzy subset. In our case, in order to reflect

different significance among multiscale edges, a sigmoid

fuzzy membership function is chosen to this end and is

expressed as

f að Þ ¼ 1

1þ exp �að Þ ¼ li ð11Þ

where a denotes the pixel values shown in the fused edge

image (according to the rules shown in previous section).

In other words, when an edge pixel i with value of 0

occurs in the fused edge image, the pixel is assigned to

the significance value of 0.5. The higher the edge values

are, the higher the li value will be. This also indicates that

the edge is in higher significance (i.e. more likely to be a

real edge).

The determination of parameter b is more bothersome.

Here, we assume the MRF is isotropic (i.e. orientation

insensitive) and homogeneous (i.e. location insensitive).

If underlying MRF is anisotropic or inhomogeneous, then

more b values need to be estimated. The most popular

techniques for b parameter estimation such as the ML

estimate (Derin & Elliott, 1987; Elliott et al., 1984) or

least square estimate (Besag, 1974), require a priori

realization to the image. Such a realization denotes the
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complete understanding to all the possible neighborhood

configurations within an image. In the case of supervised

classification to real world scene, the training data is

hard to well reflect such contextual information. This

makes those estimation algorithms hard to implement and

of less utility.

In order to overcome the difficulty in b determination,

we develop an approach which adopts a more stochastic

perspective rather than one which focuses on contextual

neighborhood. The core of the method here is to determine

a suitable value for b so as to adequately preserve the edge

pixels to the certain extent during the contextual classi-

fication. For all the edge pixels, the corresponding

logarithm probability differences between the winning

class (rating 1st) and other rating classes (from 2nd to

8th) are calculated and the resulting histogram plots are

shown in Fig. 4. The horizontal axis represents the

probability difference values d (in dB unit) between the

winning class and other rating classes, while the vertical

axis indicates the counts for the appearances of each

difference value. The logarithm differences d in Fig. 4 can

be regarded as the aid (equivalent to AbI(ci =cj) in Eq.

(9)) required by those non-winning classes (rating from

2nd to 8th) to become the winning classes appearing upon

those edge pixels. If such aid is suitably determined, the

number for the edge pixels being smoothed can be well

controlled according to our intent. In the following, Eq.
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Table 2

Classification confusion matrices for (a) ML classifier, (b) MRF model with

Boolean line process, (c) MRF model with fuzzy line process, and (d) MRF

model without line process

Class No. 1 2 3 4 5 6 7 8 Total

(a)

1 9702 536 22 55 212 33 26 369 10,955

2 3489 3284 0 4 47 153 0 24 7001

3 0 0 4530 210 0 0 0 5 4745

4 2 0 435 7344 1044 228 0 89 9142

5 0 0 0 275 2156 4900 0 58 7389

6 121 128 14 147 321 4626 0 343 5700

7 1 0 0 1 0 0 1541 305 1848

8 2237 308 551 2053 363 54 54 3953 9573

Total 15,552 4256 5552 10,089 4143 9994 1621 5146 56,353

Overall accuracy=(37,136/56,353) 65.89%

Kappa coefficient=0.60

(b)

1 10,011 1927 371 624 68 25 195 674 13,895

2 3740 1969 0 161 5 153 0 0 6028

3 0 0 4368 95 0 0 0 0 4463

4 153 1 477 7291 1358 306 0 131 9717

5 0 0 239 110 2370 10 0 10 2739

6 1298 352 26 1462 51 9439 0 7 12,635

7 25 0 0 0 0 0 1426 11 1462

8 325 7 71 346 291 61 0 4313 5414

Total 15,552 4256 5552 10,089 4143 9994 1621 5146 56,353

Overall accuracy=(41,187/56,353) 73.08%

Kappa coefficient=0.67

(c)

1 11,785 1499 141 439 204 329 474 538 15,409

2 1488 2711 0 0 0 42 0 49 4290

3 0 0 4581 0 24 0 0 0 4605

4 434 22 419 9348 1315 92 0 69 11,711

5 0 0 0 1 1327 2 0 12 1330

6 1320 3 367 131 591 9012 0 102 11,526

7 5 0 0 0 0 0 1147 0 1147

8 525 21 44 170 682 517 0 4376 6335

Total 15,552 4256 5552 10,089 4143 9994 1621 5146 56,353

Overall accuracy=(43,077/56,353) 78.56%

Kappa coefficient=0.74

(d)
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(12) expresses the relationship between the aid value and

the expected smoothed edge pixels.

Xm
k¼2

k � 1

m
Hd

k � Hd
kþ1

��
; Total edge pixels�

X2
a¼0

f að ÞXa

#"
:

ð12Þ

where m is the total number of information classes, f(a) is
defined in Eq. (11), Xa expresses the total number of edge

pixels that hold value a, R f(a)Xa then denotes the number

of the valid edge pixels, and Hk
d denotes the number of

edge pixels whose logarithm probability differences

between the winning class and the kth rating class (as

shown in Fig. 4) fall under the aid value d, respectively.

The right hand side on Eq. (12) then denotes that the

tolerated number of the edge pixels can be smoothed. We

also define Hd
m+1=0. The factor (Hk

d�Hd
k+1) specifies,

under the aid value d, the number of pixels in which the

winning class can be overturned by either the 2nd rating or

other rating classes ((k�1) classes in total). If one assumes

that the probability of the neighborhood occurrence for all

the classes is the same, the factor (k�1) /m then denotes

the probability that the winning class is overturned by one

of the (k�1) classes. For instance, in the case of k =4 and

m =8, the factor (H4
d�H5

d) then denotes under the aid

value d the number of pixels in which the winning class

(the 1st rating) can be overturned by either the 2nd, 3rd, or

4th rating class. Then 3/8 will be the probability for the

winning class being overturned by either the 2nd, 3rd, or

4th rating class. In this study, the total number of edge

pixels in the fused image with a equal to 0, 1, and 2 are

40,241, 26,550, and 17,450, respectively, and following the

right side condition set in Eq. (12), the expected number of

edge pixels being overturned are around 30,000 pixels. As

shown in Fig. 5, it is found that with d =�21 the condition

shown in Eq. (12) is fulfilled; this value is then selected.

Once the aid value is determined, one can turn back to

estimate the parameter b.
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Fig. 5. The determination of d by Eq. (11).

1 9375 1570 1125 1298 298 17 167 482 14,323

2 4235 2281 0 72 16 188 0 0 6792

3 0 0 4047 4 1 0 0 0 4052

4 2 3 237 7466 1268 822 0 66 9864

5 0 0 17 13 2253 17 0 1 2301

6 1685 99 112 938 85 8794 0 122 11,535

7 45 0 0 0 0 0 1453 40 1538

8 210 303 14 298 231 156 1 4435 5647

Total 15,552 4256 5552 10,089 4143 9994 1621 5146 56,353

Overall accuracy=(40,104/56,353) 71.16%

Kappa coefficient=0.65
Normally, within a 3 by 3 window, there are four kinds of

edges, namely, Fline boundary_, Fcorner_, Ftriple junction_,
and Fquadruple junction_. By checking the fused edge

image, it is found that Fline boundary_ and Fcorner_ hold

enormous majority. Under such circumstances, within a 3 by

3 window, the number of information class equivalent to the

central pixels can range from 1 to 6 (note that the central
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pixel and other two pixels forming Fline boundary_ or

Fcorner_ are excluded). Under the assumption that, within a

window, the probabilities for each number (from 1 to 6) of

classes’ occurrences are the same, according to Eq. (9), the

calculation for b can be obtained by

21 ¼ b 1þ 2þ 3þ 4þ 5þ 6ð Þ½ �=6 ð13Þ

Eventually, we sort out b =6, which is thus used in the

classification experiments. The classification method called

Maximer of the Posterior Marginals (MPM) is adopted to

find the solution (Marroquin et al., 1987). It is made clear

that the proposed method, in terms of analyzing the

probability histograms to each edge pixel, can well

determine how much smoothing strength (i.e. in terms of

deriving the value b) is required by the pixel so as to

achieve the controllable contextual classification results

under user’s expectation. Therefore, the method is flexible

and practical and should overcome the shortage of currently

existing parameter estimation methods and overwhelm the
(c)
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Features 

Crops 
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(a)

4

5

Fig. 6. Classification results achieved by (a) spectral data, (b) MPM with Boolean l
commonly trivially selecting b value applied to MRF based

contextual classification.
4. Results and discussions

Preliminary result of classification using IKONOS multi-

spectral imagery alone with ML classifier is modest. The

total classification accuracy of 65.89% with kappa statistic

(Congalton, 1991) of 0.6 is achieved. The corresponding

classification confusion matrix is shown in Table 2(a). It can

be seen that confusion errors between class pairs are quite

obvious. Particularly, it is found that classes 1, 4, 5, and 6

suffer serious commission error, while omission errors occur

upon classes 2, 5 and 8, respectively. The result of ML

classification thus poses a considerable room for further

improvements. Such a classification performance yet

preserves the potential difficulty in interpreting the classi-

fied image in a meaningful way because the different class

pixels are still mixing and resulting in a noisy image view as

shown in Fig. 6(a). Further refinement is clearly required.
(d)

Trees Wetland 

Naked Range 
Fields 

Cultivated 
 Land 

1

2

3

(b)
1

2

3

ine process, (c) refined MPM algorithm, and (d) MPM without line process.
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The MPM algorithm with carefully set model parameters

as described previously is used for finding the solution in

MRF contextual model. The result of classification con-

fusion matrix generated by traditional Boolean line process

is shown in Table 2(b). The overall accuracy of 73.08%

(kappa 0.67) is achieved. The commission error for class 6

and omission error for class 5 and class 8 have been

effectively reduced. Referring to the classified patterns

shown in Fig. 6(b), it can be found that the linear features

(marked as number 1, the roadway shown in white line

across the image from top to bottom), boundaries (number

4, which is the boating area, -like shape) are well

preserved, while for cultivated land (marked as numbers 2

and 5) and wetland area (number 3), the patterns are still

disturbed by certain levels of noise.

When multiscale fuzzy line process is adopted, an

accuracy of 78.56% (kappa 0.74) in overall classification

is achieved. The commission error for classes 1 and 6 are

successfully improved, while for both classes 5 and 8, the

accuracies are also enhanced. Again, by referring to the

classified pattern as shown in Fig. 6(c), the wetland (marked

as number 3) and cultivated area (numbers 2 and 5) all are

more patch-like and cleaner in comparison with Boolean

line process, while the roadway (number 1) and boundary

(number 4) are still well preserved. Such result demon-

strates that the proposed fuzzy line process outperform the

traditional Boolean line process mechanism. The efforts

made for fuzzy edge fusion and parameter estimate are

considered worthy.

The MRF model without inclusion of line process (i.e.

equal smoothing to each pixel regardless of whether the

pixels are edge or not) achieves an overall accuracy of

71.16% (kappa 0.65). The classification image is displayed

in Fig. 6(d). In comparison with Fig. 6(b) and (c), Fig. 6(d)

reveals an over-smooth result. It can be seen that the roadway

(marked number 1) are no longer recognizable. The

boundaries around the cultivated land (marked as number

2 and 5) and boating area (number 4) are also smeared. Such

a result clearly indicates that the smoothing is beyond

control. It, on the other hand, may demonstrate that the

inclusion of line process is somehow necessary as the

preservation for the detailed features and higher classifica-

tion accuracy achievement are concerned.

Above all, it can be made clear that the proposed

multiscale fuzzy line processing with carefully estimated

MRF parameter outperform the MRF with Boolean line

process (around 5% increase) and MRF without line process

(around 7% enhancement). In comparison with traditional

ML classification using spectral data alone, the demonstrated

method achieves around 13% accuracy enhancement. The

differences in accuracy between those classification results

are tested by Tau (Ma & Redmond, 1995) to confirm the

significance in classification accuracy improvements. We

may conclude that the inclusion of contextual information

can considerably improve the remotely sensed imagery

classification performance and visual interpretation if the
model is well defined and the relating parameter is

carefully chosen.
5. Concluding remarks

In this study, we show the improvement in classification

accuracy by adding contextual and edge information into the

classification pool. The results reveal that, compared to the

use of multispectral data alone, higher levels of accuracy

can be obtained. Results reveal that, with the involvement of

contextual information, the enhancements in both the

classification accuracy and visual interpretation can be

simultaneously achieved.

A method is proposed to estimate the MRF smooth

weighting parameter b from the stochastic perspective

which is based on the class probabilities corresponding to

the edge pixels. The key point to the success of such a

method is that, as far as the edge pixels are well managed,

the contextual effect can then be controlled in a reasonable

way, and naturally the higher accuracy can be expected. In

this study, the approach for estimating one MRF-based

parameter is presented. The study can be naturally extended

to perform other more complicated MRF-based neighbor-

hood parameter estimates (for example, in the anisotropic

case or higher order neighborhood system), which may draw

our attention in future study.
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